64 research outputs found

    Metrics-based Sustainability Evaluation of Cryogenic Machining

    Get PDF
    Cryogenic machining is considered as the most sustainable alternative to conventional flood-cooled, near-dry and dry machining approaches in machining processes. This paper presents the application of a sustainability evaluation methodology for manufacturing processes, focusing on cryogenic machining processes. The methodology used here involves a metrics-based Process Sustainability Index (ProcSI) evaluation. To address the proper process conditions for cryogenic machining, different machining parameters, namely the cutting speed and the coolant flow rate, are used in the experiments as the controllable variables. The ProcSI assessment helps to decide on the best cutting conditions from the sustainable manufacturing viewpoint. During the evaluation procedure, the process behavior under different process conditions is considered and discussed in the analysis to understand the process mechanism and its controllability for achieving improved sustainability

    A thermal analysis framework for cryogenic machining and its contribution to product and process sustainability

    Get PDF
    Part of: Seliger, Günther (Ed.): Innovative solutions : proceedings / 11th Global Conference on Sustainable Manufacturing, Berlin, Germany, 23rd - 25th September, 2013. - Berlin: Universitätsverlag der TU Berlin, 2013. - ISBN 978-3-7983-2609-5 (online). - http://nbn-resolving.de/urn:nbn:de:kobv:83-opus4-40276. - pp. 262-267.Cryogenic processing methods are environmentally-clean, toxic-free, and safe sustainable manufacturing processes, which also provide improved surface integrity, superior functional performance and greater product life in manufacturing processes. This paper presents a summary of findings from a preliminary study of the cryogenic cooling effects in a machining process. Various heat transfer scenarios need to be built into the model to consider the boiling phenomena. Cryogenic turning process includes a large radial thermal gradient in a thin layer of machined surface and changes the dynamic recrystallization process. A high speed, wide range temperature measurement system was developed, and preliminary experiments are carried out, investigating the contributing factors and the proper boundary conditions for modeling of cryogenic machining processes. The transition from slow cooling to a rapid cooling is observed

    Innovation in sustainable manufacturing education

    Get PDF
    Part of: Seliger, Günther (Ed.): Innovative solutions : proceedings / 11th Global Conference on Sustainable Manufacturing, Berlin, Germany, 23rd - 25th September, 2013. - Berlin: Universitätsverlag der TU Berlin, 2013. - ISBN 978-3-7983-2609-5 (online). - http://nbn-resolving.de/urn:nbn:de:kobv:83-opus4-40276. - pp. 9-16.Sustainable value creation entails generating value for all stakeholders from economic, environmental and social perspectives. In a manufacturing context, creating sustainable value requires product, process and systems level innovations to enable near-perpetual closed-loop material flow across multiple life-cycles; it also requires understanding the complex interactions of the socio-technical systems with the natural environment for emergent synthesis so sustainable value creation can occur harmoniously and continuously. However, current educational curricula with traditional disciplines is fragmented and do not represent the multidisciplinarity or the integration needs; it is now necessary to work at the interface of the various disciplines to address the complex issues that are brought about through sustainability. Thus, to create sustainable value through sustainable manufacturing will require transformational and innovative reforms in education with an overall paradigm shift to provide the future generation of engineers, scientists and managers the necessary technical knowledge, skills and capabilities. This paper presents recent trends in developing such innovative educational programs in sustainable manufacturing. Also, the technological challenges posed by the need for implementing viable innovative sustainable manufacturing educational programs inevitably require fundamental studies on total life-cycle products, closed-loop manufacturing processes and integrated production systems extending beyond to the entire supply chain operations. This paper is aimed at tackling these significant challenges by essentially developing sustainable value propositions for all forms of educational programs (formal degrees and certificate level programs, professional/continuing education programs, short courses and web-based interactive learning programs, etc.) to incorporate the new knowledge needed to promote value-added sustainable manufacturing at product, process and system levels

    Sustainable value creation through innovative product design

    Get PDF
    Part of: Seliger, Günther (Ed.): Innovative solutions : proceedings / 11th Global Conference on Sustainable Manufacturing, Berlin, Germany, 23rd - 25th September, 2013. - Berlin: Universitätsverlag der TU Berlin, 2013. - ISBN 978-3-7983-2609-5 (online). - http://nbn-resolving.de/urn:nbn:de:kobv:83-opus4-40276. - pp. 60-65.In the field of product development, many organizations struggle to create a value proposition that can overcome the headwinds of technology change, regulatory requirements, and intense competition, in an effort to satisfy the long-term goals of sustainability. Today, organizations are realizing that they have lost portfolio value due to poor reliability, early product retirement, and abandoned design platforms. Beyond Lean and Green Manufacturing, shareholder value can be enhanced and optimized by taking on a broader perspective, and integrating sustainability innovation elements into product designs. This paper presents a framework for achieving the goal of mutual value creation, and identifies the drivers of product design that are used to ultimately create what is termed - The Sustainable Products Value Proposition. Focus is placed on a balanced approach towards the integration of total cost of ownership, social and environmental improvements, and an expanded definition of product life drivers

    On the Effects of Residual Stresses Induced by Coated and Uncoated Cutting Tools with Finite Edge Radii in Turning Operations

    Get PDF
    This paper presents an analysis of residual stresses in turning of AISI 316L and AISI 1045 steels with coated and uncoated tools having finite edge radii. An analytical predictive model, and experimental techniques involving X-ray diffraction and IR thermal imaging were used. Machining with coated tools produce higher superficial residual stresses, larger tensile layer thickness and higher residual stresses below the machined surface when using large cutting edge radii at low feed rates. This effect is correlated with the increase in the amount of heat conducted into the workpiece, and the associated generation of high tensile residual stresses and severe work-hardening.http://www.sciencedirect.com/science/article/B8CXH-4P37B21-X/1/ade5f4d85d7cb77cb37cbb62ae400bb

    Future research directions in the machining of Inconel 718

    Get PDF
    Inconel 718 is the most popular nickel-based superalloy, extensively used in aerospace, automotive and energy industries owing to its extraordinary thermomechanical properties. It is also notoriously a difficult-to-cut material, due to its short tool life and low productivity in machining operations. Despite significant progress in cutting tool technologies, the machining of Inconel 718 is still considered a grand challenge.This paper provides a comprehensive review of recent advances in machining Inconel 718. The progress in cutting tools’ materials, coatings, geometries and surface texturing for machining Inconel 718 is reviewed. The investigation is focused on the most adopted tool materials for machining of Inconel 718, namely Cubic Boron Nitrides (CBNs), ceramics and coated carbides. The thermal conductivity of cutting tool materials has been identified as a major parameter of interest. Process control, based on sensor data for monitoring the machining of Inconel 718 alloy and detecting surface anomalies and tool wear are reviewed and discussed. This has been identified as the major step towards realising real-time control for machining safety critical Inconel 718 components. Recent advances in various processes, e.g. turning, milling and drilling for machining Inconel 718 are investigated and discussed. Recent studies related to machining additively manufactured Inconel 718 are also discussed and compared with the wrought alloy. Finally, the state of current research is established, and future research directions proposed.<br/

    Surface integrity in dry and cryogenic machining of AZ31B Mg alloy with varying cutting edge radius tools

    Get PDF
    Surface integrity of machined products has a critical impact on their functional performance. Magnesium alloys are lightweight materials for transportation industry and are also emerging as a potential material for temporary biomedical implants. However, their unsatisfactory corrosion resistance limits their application to a great extent. Surface integrity factors, such as grain size, crystallographic orientation and residual stresses, were reported to have significant influence on corrosion resistance of AZ31 Mg alloys. In this study, AZ31B Mg discs were orthogonally turned using cutting tools with two edge radii under both dry and cryogenic conditions. The influence of cutting edge radius and cooling method on surface integrity was investigated. Cryogenic machining using a large edge radius tool led to a thicker grain refinement layer, larger compressive residual stresses and stronger intensity of basal texture, which may remarkably enhance the corrosion performance of magnesium alloys.info:eu-repo/semantics/publishedVersio

    Leveraging Insights from Unique Artifacts for Creating Sustainable Products

    Get PDF
    Sustainablemanufacturingpursuestheachievementofeconomic,environmental, and societal benefits by promoting the long-term use of materials, products, and components within a circular economy. The analysis of one-of-a-kind classical products reveal some designs that exhibit a creative combination of parts from a variety of industrial sectors. For example, Italian designers behind some innovative artifacts have managed to integrate components from different sources into attractive and emotional-oriented objects that are revered to this day. The present work aims to combine 6R-based sustainable manufacturing with insights gained from some classical products of Italian design characterized by simplicity and decontextualization of common objects. This manuscript presents the design process for leveraging concepts embodied in some unique artifacts from the Italian design movement to inspire the realization of sustainable products. A commercial household item was redesigned to demonstrate the application of the approach by utilizing end-of-life items collected from municipal solid waste. The potential benefits of the triple bottom line approach associated with leveraging concepts, such as those from Italian design, to develop more sustainable products is also discussed

    Developing a methodology towards sustainable PCD compact core drilling on planet Mars

    Get PDF
    ABSTRACT This paper describes a study of core drilling into basalt rock in anticipation of a Mars mission. Since the objective is to maintain a sustainable drilling mission on this distant planet, we perform a methodical study to examine parameters which influence sustainability including PCD tool-wear and drilling forces. INTRODUCTION Two gradual modes of insert-wear are experimentally measured: flank wear (VB) and cutting edge radius wear (CERW). Furthermore, relevant equations that relate wear to several factors including rock strength and process parameters are developed. The findings suggest a strong influence of rock hardness, process parameters, and tool geometry on tool-wear. Similar functional dependence is found for the generated thrust force and torque on rock hardness, rake angle, spindle speed, and drill feed. Consequently, equations are derived to model thrust force and torque as functions of these variables
    corecore